

Spatial pattern analyses across Africa for a better understanding of biodiversity patterns using remote sensing

"Biodiversity of Africa - Observation and Sustainable Management for our Future!" International Congress, 29 September – 3 October 2008, at Spier, RSA

Remote Sensing data

- temporal as well as spatial resolution improved, therefore:
 - improved discrimination of landcover through phenology (e.g. MODIS)
 - improved mapping of land cover change

NDVI time-series

Remote Sensing data

- temporal as well as spatial resolution improved, therefore:
 - improved discrimination of landcover through phenology (e.g. MODIS)
 - improved mapping of land cover change

land cover maps \rightarrow distribution of habitats

land cover change maps \rightarrow dynamics of habitats for species

...but spatial attributes of the fragments provide further relevant ecological information on suitability of potential habitats

BIOLOG

NDVI time-series

same area of landcover but different spatial arrangement

same area of landcover but different spatial arrangement

fragments might be inappropriate for a species:

same area of landcover but different spatial arrangement

fragments might be inappropriate for a species:

same area of landcover but different spatial arrangement

fragments might be inappropriate for a species:

same area of landcover but different spatial arrangement

BIOLOG

too small
complex shape
too isolated

fragments might be inappropriate for a species:

spatial attributes are important for land management and conservation planning

Importance of spatial composition

Ecosystems need a minimum of spatial integrity to deliver their services:

- fragmentation results in e.g. smaller patch areas (e.g. edge effects) and decreased connectivity
 - \rightarrow altered species distribution & species communities

Potential forest distribution using a spatial prediction modelling approach with e.g. precipitation, temperature, soil and elevation data

Maxent 3.0.1, 18 variables, n=1000

Actual rainforest cover (MODIS, 2001-2006) > 80% loss in rainforest cover; highly fragmented

Classification tree, MOD09 1000m, 2001-2006

Kakamega-Nandi Forests

 \rightarrow 60% loss in natural forest cover since 1913

 \rightarrow forest fragmentation

Aerial photography, Landsat MSS, (E)TM

shapes, reduced connectivity

How to analyse spatial patterns with respect to ecological relevance?

Various software packages serve the purpose to analyse spatial patterns (e.g. Fragstats)

- semi-automatic processing
- implemented in a GIS
- potential to modify/implement algorithms

Various software packages serve the purpose to analyse spatial patterns (e.g. Fragstats)

- semi-automatic processing
- implemented in a GIS
- potential to modify/implement algorithms

<u>r.pi</u> (raster patch index)

- basic analysis (SHAPE, asymmetry, fractal-Index)
- Connectivity analysis
 - k-ENN (Euklidean Nearest Neighbours)
 - Omnidirectional Connectivity

Projektträger im DLR

Various software packages serve the purpose to analyse spatial patterns (e.g. Fragstats)

- semi-automatic processing
- implemented in a GIS
- potential to modify/implement algorithms

<u>r.pi</u> (raster patch index)

- basic analysis (SHAPE, asymmetry, fractal-Index)
- Connectivity analysis
 - k-ENN (Euklidean Nearest Neighbours)
 - Omnidirectional Connectivity
- Considering the environmental attributes:
- k-FNN (Functional/ecological NN)
- individual-based metrics
 - (Im-)Migration
 - Searchtime

Various software packages serve the purpose to analyse spatial patterns (e.g. Fragstats)

- semi-automatic processing
- implemented in a GIS
- potential to modify/implement algorithms

<u>r.pi</u> (raster patch index)

- basic analysis (SHAPE, asymmetry, fractal-Index)
- Connectivity analysis
 - k-ENN (Euklidean Nearest Neighbours)
 - Omnidirectional Connectivity

Considering the environmental attributes:

- k-FNN (Functional/ecological NN)
- individual-based metrics
 - (Im-)Migration
 - Searchtime

Connectivity: Searchtime

and Research

Connectivity: Searchtime

Projektträger im DLR

Connectivity: Searchtime

average Searchtime, individuals/patch=10000

Patch contribution to connectivity

Iterative removal of patch *x* and assign differences of *searchtime* of all other patches.

Patch contribution to connectivity

Differences in searchtime after removal of patch B

Patch contribution to connectivity

• small agglomerated rainforest remnants in West Africa contribute less to sustaining connectivity than larger patches but are nevertheless important

Differences in average Searchtime, individuals/patch=10000

Application & Outlook

- development of new spatial algorithms software (OpenSource)
- spatial pattern analysis created value for BIOTA
 - assessment of patch relevance for conservation planning

- improvement in species distribution models (e.g. overestimation)...
- usefulness of this analysis in South Africa and Mexico for conservation planning & resource management (SANBI, CONABIO)

... and beyond?

 the spatial analysis can be extended to a global biodiversity monitoring scheme using remote sensing in order to:

- track near real-times spatial ecosystem changes
- identify biodiversity threats through
 - increased edge effects
 - isolation of remnants etc.

... and beyond?

 the spatial analysis can be extended to a global biodiversity monitoring scheme using remote sensing in order to:

- track near real-times spatial ecosystem changes
- identify biodiversity threats through
 - increased edge effects
 - isolation of remnants etc.

 the spatial analysis can be improved from being based on categorical landcover to continuous information about landcover like

- fractional cover
- quality of cover (e.g. degradation) with the talk 1.3

