

COSTS AND BENEFITS OF CONSERVING KAKAMEGA FOREST UNDER THREE DIFFERENT MANAGEMENT APPROACHES

P. M. Guthiga¹, J. Mburu², K. Holm-Mueller³ in collaboration with J. Kasina⁴ & M. Cramer⁵

¹KIPPRA, ²ILRI & ³ ILR, Uni-Bonn ⁴KARI, ⁵Uni-Bielefeld

"Biodiversity of Africa - Observation and Sustainable Management for our Future!" International Congress, 29 September – 3 October 2008, at Spier, RSA

Background

Forest biodiversity in Kenya

- Relatively small forest cover (<2% of the land cover)
- Reservoirs of biodiversity, ecosystem services, basic needs, commercial importance
- Types: Costal, dry zone, montane, **western rain forest**
- Management:-
 - Forest reserves Kenya Forest Service (KFS) formerly FD
 - National reserves/parks -Kenya wildlife service (KWS),
 - Trust land -(local authorities),
 - Others -(private)
- High rates of deforestation & degradation

Study area

Overview of the Study Area

- Kakamega forest-only patch of tropical rainforest in Kenya
- Diverse, unique and numerous flora and fauna
- Not a single block; main forest + three satellite fragments (~24,000 ha)
- Area around forest; conducive for agriculture, high pop. density, high pop. growth rate, high poverty rates
- Dependence on the forest for basic needs-fuel wood, thatch grass, grazing

Study area

Study Area Cont'd

- Kakamega forest is managed under three approaches;
 - 1. state-led protectionist~4,000 ha

by Kenya Wildlife Service (KWS)

- **2. state-led incentive-based**~20,000 ha by Forest Department (FD)
- 3. private incentive-based~130 ha

by Quakers Church Mission (QCM)

Figure 1-1: Map of Kakamega forest and its fragments

Research problem

• Forest management involve;

- Use of land, cash, capital, labor (Costs) and generation of benefits

- As economic resources, forests ought to be managed efficiently; net contribution to society (Kao *et al*, 1993)
- Distribution of costs & benefits among stakeholdersequity concerns (Ferraro, 2002)
- Little information on economic efficiency & equity issues of the existing management approaches

Study Objectives

• Overall objective;

Analyze and compare three approaches in terms of economic efficiency& distribution of costs & benefits.

• Specific objectives;

- Analyze distribution of different categories and magnitudes of costs and benefits-at local, national and global levels
- II. Assess economic efficiency of the three approaches using CBA

Data

- Target population; Forest adjacent communities (up to 10 km from forest boundary)
- A census of households (HHs) about 34,000 from which a random sample of 378 HHs was generated
- Data collection-face-to-face questionnaire interviews
 - HH socio-economic characteristics, resource endowment, farming information, types and quantities of forest products extracted, costs incurred, satisfaction with forest management
- Final sample; 364 HH (220 FD,83 QCM and 61 KWS)
- Secondary & other sources;
 - Official records of forest management, government records, KFMP (1994), complimentary studies e.g. (lason, forthcoming), Glenday (2006)

Benefits of nature conservation

Use Values		Non-use values		
Direct-use	Indirect-	Option	Bequest value	Existence
values	use values	value		Value
Outputs	Functional	Future	Use and non-	Value of
that are	benefits	direct	use values of	knowledge
directly	Examples:	and	environmental	of
consumable	Flood	indirect	legacy	continued
Examples:	control,	values		existence
Food,	nutrient			
Recreation	cycles			

Source: Pearce and Moran, 1994

CBA-theory

Costs of nature conservation

- Categories of costs;
 - Opportunity cost (value of forgone use)
 - Management costs (fixed and recurrent)
 - Extraction costs (labor)
 - Conservation activities-related costs
 - Transaction costs

CBA-theory

Valuation approaches

- Four distinct approaches (Pagiola et al, 2004);
 - Total value of flow from an ecosystem
 - Net benefits of intervention in an ecosystem
 - Distribution of costs and benefits
 - Identifying potential conservation financing
- At what level? Local, national or global
- Valuation methods:
 - Primary sources (revealed or stated preference methods)
 - Secondary sources (benefit transfer method)
- All benefits and costs were expressed in US\$/ha of forest (for ease of comparison)

CBA-methods Valuation of direct benefits

- From the sample household;
 - (Quantities extracted/yr) X (Market price)=Value extracted
 by a household (HHv)
 - ∑HHv)/number of extracting households = Average value of extracted product (Av.HHv)
- From sample to population (extrapolation);
 - (Av HHv) X extracting households in the population
 (extrapolated from the proportion extracting from the sample households)=Total value of product extracted/yr

CBA-methods Valuation of indirect benefits

Benefits	Method & Source	Stakeholder
Soil conservation	WTP (lason, forthcoming)	Local
	VVTP (KFIVIP, 1994)	INATION
Tourism	Gate revenues	Nation
	WTP (Pearce, 1996)	Global
Watershed protection	WTP (lason, forthcoming)	Local
	WTP (KFMP, 1994)	Nation
Carbon sequestration	Direct measurement (Glenday, 2006)	Global
Bequest values	WTP (lason, forthcoming)	Local
Pollination service*	Kasina (2007)	Local, Nation

*Measured to capture the economic value of pollinators. Not a forest service but the forest could be viewed as a habitat, source of food e.t.c. for the pollinators-challenge of attribution

Valuation of costs

Category	Stakeholder	Method/Source
Opportunity cost	Local community	Gross margins
		(Ryaner, 1991)
Extraction labor	Local community	Own survey
		(extrapolation)
Conservation	Local community	Own survey
activities		(extrapolation)
Transaction costs	Local community	Own survey
		(extrapolation)
Management cost (fixed & recurrent)	Nation	Own survey

CBA-methods CBA-Empirical application

- Benefits and cost are realized over time
 - Time horizon set at 30 years
 - Future costs and benefits are discounted to obtain their present value
 - Discount rate (14% at local level; 12% at national and global levels)
- Future flows of benefits were approximated by rate of forest degradation/regeneration & other factors
- Future flows of costs were approximated
- Comparison; With and without proposed intervention
 With forest vis a vis without forest (farming)
- Sensitivity analysis-capture different scenarios

Direct benefits

	Value (US \$/ha/Yr) by Forest Mgt		
Benefits	FD	QCM	KWS
Firewood	33	384	10
Grazing	38	136	0
Thatch grass	7	0	0
Charcoal	1	0	0
TOTAL	79	520	10

QCM-highest direct benefits, KWS lowest

Inverse conservation status; QCM most degraded (Bleher *et al,* 2006) Av. Value of NTFP = US \$ 72/ha/yr

CBA-results

Tourism

In the year 2004/05 KWS earned the country a total of US \$ 43,262 as gate fee collection

Isiukhu falls with KK forest

Indirect benefits

	Value (US \$/Ha/Yr) by Forest Mgt		
Benefit	FD	QCM	KWS
Soil conservation	43	43	43
Water regulation	9	9	9
Recreation	5	0	10
Bequest	30	30	30
Carbon sequestration [#]	1060	795	1060

#carbon stock + annual sequestration (+Ve or –Ve)

Pollination service

- Pollination increased crop yield; by 25% in tomatoes and 99% in squash
- Significant increase in the quality of seeds and fruit sizes
- Overall contribution; about 50% of the annual value of some selected crops or about 40% net benefit
- About 50% of farmers knew of the role of bee pollination in crop production.
- After being informed about the role of pollination, more than 98% were willing to pay an estimated US\$ 90 per household annually for pollination of their crops by bees

CBA-results

Costs (US \$/ha)

Cost Category	FD	QCM	KWS
Local level			
Opportunity costs	148	148	148
Extraction Labor	32	29	0.1
Transaction costs	0.2	2	0.1
Conservation activities	0.1	0.4	0.3
User/access Fees	0.2	0	0
Crop loss due to wildlife	0.1	0.2	0.1
National level			
Management costs	13.5	0.1	16
TOTAL	194.1	179.7	164.6

and Research

CBA-results

NPV's (US\$/ha) at local level

Approach	Opportunity costs excluded	Opportunity costs included
KWS	+128	-905
FD	+375	-658
QCM	+3,408	+2,375

QCM economically worthy FD and KWS not worthy Inverse relationship with forest degradation; QCM most degraded (Bleher *et al*, 2006)

Projektträger im DLF

NPV's (US\$/ha) at National level

Approach	Opportunity costs excluded	Opportunity costs included
KWS	+1,039	-261
FD	+1,300	-226
QCM	+4,479	+3,180

Nation subsidizing conservation for the rest of the world

-Norton-Griffiths and Southey (1995)

NPV's (US\$/ha) at Global level

Approach	Opportunity costs excluded	Opportunity costs included
KWS	+1,447	+133
FD	+1,447	+147
QCM	+4,271	+2,972

All profitable at the global level; opportunity for

conservation esp. through an international compensatory

mechanism

Conclusions

- Management approach influence distribution of costs and benefit
- Local communities bear the largest share of costs but most benefits accrue at the global level
- Global perspective; all approaches are economically worthwhile

Policy Implications

- Appropriate international financing/compensatory mechanisms are required
- Measures to increase profitability
 - eco-tourism should be promoted
 - Reduce costs e.g. standardizing units of forest products, information on prices e.t.c.

Outlook

• Need for further ecological/economic studies to establish more accurate attribution of ecosystem services

• Tropical forests are increasingly becoming `global goods' in the provision of carbon sequestration service. The REDD mechanism offers an opportunity for tropical countries to gain from avoiding deforestation; an opportunity & a challenge

• Need to prioritise the need of the local communities in forest management

THANK YOU ALL FOR LISTENING!

